Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3β -Acetoxy- 8β , 10β -dihydroxy- 6β methoxyeremophil-7(11)-en-8,12-olide

Hai-Bo Wu, Hua Li, Xiao-Cong Lan and Wen-Shu Wang*

College of Life and Environment Science, Minzu University of China, Beijing 100081, People's Republic of China Correspondence e-mail: wangwshu@gmail.com

Received 5 July 2010; accepted 27 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.049; wR factor = 0.139; data-to-parameter ratio = 8.3.

The title compound, $C_{18}H_{26}O_7$, is an eremophilenolide which has been isolated from the plant Ligularia duciformis for the first time. The present study confirms the atomic connectivity assigned on the basis of ¹H and ¹³C NMR spectroscopy. The molecule contains three fused rings, two six-membered rings in chair confomations and a five-membered ring in a flattened envelope conformation. Two hydroxy groups are involved in formation of intra- and intermolecular O-H···O hydrogen bonds. The latter ones link molecules into chains propagating in [010].

Related literature

For related compounds extracted from Ligularia duciformis and Cacalia roborowski, see Wang et al. (2008) and Zhang et al. (1998), respectively.

Experimental

Crystal data C18H26O7

 $M_r = 354.39$

Orthorhombic, $P2_12_12_1$ a = 7.3036 (15) Åb = 9.789 (2) Å c = 25.553(5) Å V = 1826.9 (6) Å³

Data collection

Rigaku R-AXIS RAPID IP	12058 measured reflections
diffractometer	1885 independent reflections
Absorption correction: multi-scan	1203 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.061$
$T_{\min} = 0.952, \ T_{\max} = 0.980$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ wR(F²) = 0.139 227 parameters H-atom parameters constrained S = 0.89 $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ 1885 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O2 - H2A \cdots O3 \\ O3 - H3A \cdots O2^{i} \end{array}$	0.82 0.82	2.19 2.06	2.879 (4) 2.755 (4)	142 143
Summature and as (i)				

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The project was supported by the 985 Project (MUC985) Minzu University of China, and the Major Project for Young Teachers in Minzu University of China CUN10A, together with the 'Programme of Introducing Talents of Discipline to Universities' (B08044), and the 'Project for Scientific and Technical Achievements in Industrialization', Beijing Education Commission.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2743).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2000). Crystal Structure. Rigaku/MSC, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, W. S., Dai, X., Hong, L. Y., Lu, P., Feng, J. C. & Jiao, Y. G. (2008). Helv. Chim. Acta, 91, 1118-1123.

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.50 \times 0.50 \times 0.20 \ \text{mm}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

Zhang, S. M., Zhao, G. L., Li, R. & Lin, G. Q. (1998). Phytochemistry, 48, 519-524.

Acta Cryst. (2010). E66, o2161 [doi:10.1107/S1600536810029831]

3\$\beta-Acetoxy-8\$\beta,10\$\beta-dihydroxy-6\$\beta-methoxyeremophil-7(11)-en-8,12-olide

H.-B. Wu, H. Li, X.-C. Lan and W.-S. Wang

Comment

Ligularia duciformis(C. Winkl.) Hand.-Mazz. grows in the western area of mainland China. It is used in traditional Chinese medicine having effects on dispelling phlegm and relieving cough activities. As a part of our research on biological resource by ethnic minorities in China, the title compound was isolated. Its structure was identified by NMR spectra data and compared with the previous reports (Zhang *et al.*, 1998; Wang *et al.*, 2008). Herewith we present its crystal structure.

The molecule of the title compound contains a three-ring system A/B/C(Fig.1). There is a *cis* junction between the rings A(C9–C5/C10) and B (C5–C3/C12–C10), while the methoxy group at C4 site and the hydroxyl group at C12 site are in the same orientation with two methyl groups at C6 and C5 sites. Rings A and B are both in chair conformations. The furan ring C (C12–C3/C2–C1/O1), of course, is in envelope-like conformations. Two hydroxy groups are involved in formation of intra- and intermolecular O—H…O hydrogen bonds (Table 1). The latter ones link molecules into chains propagated in direction [010].

Experimental

The air-dried whole plant of *Ligularia duciformis* (1.5 kg) were pulverized and extracted three times with MeOH (each for 7 days) at room temperature. The extract was concentrated to give a residue (110 g), which was further separated by CC (SiO₂, 200–300mesh, petroleum ether/EtOAc (30:1, 20:1, 15:1, 10:1, 8:1, 5:1, 3:1, 2:1, 1:1, 1:1.5 (ν/ν)) to yield 10 fractions: Fr. 1–10. Each fraction was examined by TLC and combined to afford many subfractions. Fr.8a (1.4 g) was subjected to CC (SiO₂, 200–300mesh, petroleum ether/ EtOAc 8:1, 5:1 (ν/ν)) to provide the title compound (80 mg). ¹H and ¹³C NMR spectral data of this compounds was recorded on Bruker-AV-500 s pectrometer, using CDCl₃ as solvent and Me₄Si as internal standard. The stereochemistry can be observed by X-ray diffraction experiment.

Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.98-1.00 Å and O—H = 0.82 Å, and refined as riding with $U_{iso}(H) = 1.2-1.5Ueq(C,O)$. In the absence of any significant anomalous scatterers in the molecule, the absolute configuration has been arbitrarily assigned.

Figures

Fig. 1. View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3β-Acetoxy-8β,10β-dihydroxy-6β-methoxyeremophil-7(11)-en-8,12-olide

F(000) = 760

 $\theta = 2.2 - 25.0^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Block, colourless

 $0.50 \times 0.50 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.288 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 12058 reflections

Crystal data

C₁₈H₂₆O₇ $M_r = 354.39$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.3036 (15) Å b = 9.789 (2) Å c = 25.553 (5) Å $V = 1826.9 (6) \text{ Å}^3$ Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer	1885 independent reflections
Radiation source: fine-focus sealed tube	1203 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.061$
Ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = 0 \rightarrow 8$
$T_{\min} = 0.952, \ T_{\max} = 0.980$	$k = 0 \rightarrow 11$
12058 measured reflections	$l = 0 \rightarrow 30$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.139$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0856P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.89	$(\Delta/\sigma)_{max} < 0.001$
1885 reflections	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
227 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.130 (8)

Special details

Experimental. Since the two skeleton methyl group in eremophilenolides are biogenic b position, we draw the relative stereochemistry of the title eremophilenolide, by reference to the structures of related eremophilenolides in Wang at al. (2008) and Zhang, *et al.* (1998) although the absolute configuration could not be reliably determined from anomalous dispersion effects. Furthermore, the relative stereochemistry in the title compound was confirmed by NMR data. 13 C NMR (125 MHz, CDCl₃, δ , p.p.m.): 177.0(C17), 170.2(C1), 152.9(C3), 129.7(C2), 103.4(C12), 79.8(C4), 74.7(C10), 71.4(C7), 57.9(C16), 47.4(C5), 44.3(C11), 36.5(C6), 30.0(C8), 27.5(C9), 21.3(C18), 12.8(C14), 12.5(C15), 8.8(C13).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.1967 (4)	-0.0086 (3)	0.16487 (12)	0.0560 (9)
O2	-0.1302 (4)	0.1257 (3)	0.23691 (10)	0.0499 (8)
H2A	-0.1081	0.2051	0.2450	0.075*
O3	-0.0053 (4)	0.3976 (2)	0.21312 (9)	0.0431 (7)
H3A	0.0292	0.4773	0.2139	0.065*
O4	0.2582 (4)	0.2059 (3)	0.23680 (10)	0.0500 (8)
O5	0.3015 (4)	0.4876 (3)	0.05334 (11)	0.0554 (9)
O6	-0.1385 (6)	-0.2075 (3)	0.12421 (14)	0.0870 (13)
O7	0.4013 (7)	0.4379 (4)	-0.02711 (15)	0.0977 (14)
C1	-0.0818 (8)	-0.1056 (4)	0.14538 (19)	0.0605 (14)
C2	0.1101 (7)	-0.0616 (4)	0.15266 (18)	0.0525 (12)
C3	0.1075 (6)	0.0623 (4)	0.17441 (15)	0.0377 (10)
C4	0.2533 (6)	0.1666 (4)	0.18310 (14)	0.0385 (9)
H4A	0.3748	0.1278	0.1728	0.046*
C5	0.2130 (5)	0.2971 (4)	0.14977 (15)	0.0331 (9)
C6	0.2322 (6)	0.2612 (4)	0.09058 (14)	0.0400 (10)
H6A	0.1475	0.1825	0.0844	0.048*
C7	0.1687 (6)	0.3740 (4)	0.05353 (15)	0.0463 (11)
H7A	0.1630	0.3351	0.0174	0.056*
C8	-0.0162 (6)	0.4317 (5)	0.06655 (15)	0.0482 (11)
H8A	-0.1115	0.3645	0.0567	0.058*
H8B	-0.0365	0.5153	0.0456	0.058*
C9	-0.0369 (6)	0.4666 (3)	0.12460 (15)	0.0408 (10)
H9A	0.0431	0.5451	0.1331	0.049*
H9B	-0.1650	0.4942	0.1315	0.049*
C10	0.0124 (5)	0.3469 (3)	0.16006 (14)	0.0322 (9)
C11	-0.1312 (6)	0.2326 (3)	0.15316 (15)	0.0374 (9)
H11A	-0.2525	0.2676	0.1641	0.045*
H11B	-0.1392	0.2083	0.1156	0.045*
C12	-0.0877 (6)	0.1053 (4)	0.18429 (16)	0.0409 (10)
C13	0.2662 (9)	-0.1493 (5)	0.1353 (2)	0.0872 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H13A	0.3821	-0.1035	0.1434	0.131*
H13B	0.2578	-0.1648	0.0975	0.131*
H13C	0.2611	-0.2371	0.1537	0.131*
C14	0.4250 (6)	0.2095 (5)	0.07529 (16)	0.0563 (12)
H14A	0.4278	0.1888	0.0378	0.084*
H14B	0.4536	0.1266	0.0952	0.084*
H14C	0.5159	0.2802	0.0832	0.084*
C15	0.3518 (6)	0.4075 (4)	0.16654 (16)	0.0459 (11)
H15A	0.4765	0.3748	0.1599	0.069*
H15B	0.3372	0.4267	0.2040	0.069*
H15C	0.3299	0.4912	0.1465	0.069*
C16	0.3729 (6)	0.1197 (5)	0.26786 (17)	0.0645 (13)
H16A	0.3710	0.1513	0.3043	0.097*
H16B	0.4985	0.1233	0.2545	0.097*
H16C	0.3277	0.0256	0.2662	0.097*
C17	0.4023 (8)	0.5098 (6)	0.0103 (2)	0.0668 (14)
C18	0.5228 (10)	0.6339 (6)	0.0173 (2)	0.099 (2)
H18A	0.5956	0.6483	-0.0145	0.149*
H18B	0.6048	0.6196	0.0471	0.149*
H18C	0.4462	0.7144	0.0237	0.149*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.058 (2)	0.0380 (14)	0.072 (2)	-0.0132 (17)	-0.0068 (17)	0.0012 (15)
O2	0.0555 (19)	0.0408 (14)	0.0533 (17)	0.0006 (15)	0.0123 (15)	0.0028 (14)
O3	0.0529 (17)	0.0325 (13)	0.0438 (14)	0.0023 (15)	0.0055 (15)	-0.0100 (12)
O4	0.0542 (19)	0.0575 (16)	0.0385 (15)	0.0164 (17)	-0.0133 (15)	-0.0020 (14)
O5	0.065 (2)	0.0504 (16)	0.0505 (17)	-0.0109 (17)	0.0103 (16)	0.0007 (14)
O6	0.123 (3)	0.0371 (17)	0.101 (3)	-0.020 (2)	-0.010 (3)	-0.0107 (18)
O7	0.136 (4)	0.086 (3)	0.071 (2)	-0.007 (3)	0.051 (3)	-0.005 (2)
C1	0.084 (4)	0.027 (2)	0.070 (3)	-0.005 (3)	0.001 (3)	0.003 (2)
C2	0.072 (3)	0.029 (2)	0.057 (3)	0.010 (2)	0.003 (3)	0.006 (2)
C3	0.044 (2)	0.029 (2)	0.040 (2)	0.011 (2)	-0.003 (2)	0.0035 (17)
C4	0.040 (2)	0.038 (2)	0.037 (2)	0.011 (2)	-0.009 (2)	-0.0018 (17)
C5	0.030 (2)	0.0316 (17)	0.038 (2)	-0.0008 (17)	-0.0052 (19)	-0.0009 (17)
C6	0.041 (2)	0.039 (2)	0.040 (2)	0.000 (2)	-0.001 (2)	-0.0067 (17)
C7	0.051 (3)	0.050 (2)	0.038 (2)	-0.001 (2)	-0.003 (2)	0.0031 (19)
C8	0.049 (3)	0.054 (2)	0.042 (2)	0.004 (2)	-0.003 (2)	0.015 (2)
C9	0.043 (2)	0.031 (2)	0.049 (2)	0.0072 (18)	0.000 (2)	0.0053 (17)
C10	0.036 (2)	0.0272 (18)	0.0331 (19)	0.0036 (18)	-0.0028 (19)	-0.0041 (16)
C11	0.033 (2)	0.0353 (19)	0.044 (2)	0.0033 (19)	-0.001 (2)	0.0067 (18)
C12	0.044 (2)	0.032 (2)	0.046 (2)	-0.004 (2)	-0.002 (2)	0.0001 (18)
C13	0.100 (5)	0.048 (3)	0.113 (5)	0.029 (3)	0.011 (4)	-0.019 (3)
C14	0.053 (3)	0.063 (3)	0.053 (3)	0.014 (2)	0.007 (2)	-0.007 (2)
C15	0.040 (2)	0.048 (2)	0.050 (2)	-0.004 (2)	-0.007 (2)	-0.010 (2)
C16	0.049 (3)	0.083 (3)	0.061 (3)	0.007 (3)	-0.017 (2)	0.024 (3)
C17	0.075 (4)	0.068 (3)	0.058 (3)	0.007 (3)	0.021 (3)	0.015 (3)

C18	0.100 (5)	0.085 (4)	0.113 (5)	-0.021 (4)	0.035 (4)	0.019 (4)
Geometric p	arameters (Å, °)					
01—C1		1.361 (6)	C8-	-С9		1.530 (5)
01-C12		1.458 (5)	C8-	-H8A		0.9900
O2—C12		1.394 (5)	C8-	-H8B		0.9900
02—H2A		0.8200	C9–	-C10		1.524 (5)
O3—C10		1.450 (4)	C9–	-H9A		0.9900
O3—H3A		0.8200	C9–	-H9B		0.9900
O4—C4		1.425 (4)	C10-	C11		1.544 (5)
O4—C16		1.429 (5)	C11-	C12		1.512 (5)
O5-C17		1.342 (5)	C11-	—H11A		0.9900
O5—C7		1.476 (5)	C11-	—H11B		0.9900
06—C1		1.208 (5)	C13-	—H13A		0.9800
O7—C17		1.186 (6)	C13-	—H13B		0.9800
C1—C2		1.478 (7)	C13-	—Н13С		0.9800
С2—С3		1.334 (5)	C14-	—H14A		0.9800
C2—C13		1.494 (7)	C14-	—H14B		0.9800
C3—C4		1.492 (5)	C14-	—H14C		0.9800
C3—C12		1.508 (6)	C15-	—H15A		0.9800
C4—C5		1.563 (5)	C15-	—H15B		0.9800
C4—H4A		1.0000	C15-	—H15C		0.9800
C5—C15		1.543 (5)	C16-	—H16A		0.9800
С5—С6		1.559 (5)	C16-	—H16B		0.9800
C5—C10		1.566 (5)	C16-	—H16C		0.9800
C6—C7		1.526 (5)	C17-	—C18		1.511 (8)
C6—C14		1.547 (6)	C18-	—H18A		0.9800
С6—Н6А		1.0000	C18-	—H18B		0.9800
С7—С8		1.501 (6)	C18-	—H18C		0.9800
C7—H7A		1.0000				
C1C1	2	108.7 (3)	O3–	-C10-C11		107.1 (3)
С12—О2—Н	12A	109.5	С9—	-C10C11		109.2 (3)
С10—О3—Н	13A	108.8	O3–	-C10-C5		110.3 (3)
C4-04-C1	6	113.0 (3)	С9—	-C10-C5		111.1 (3)
С17—О5—С	7	119.0 (4)	C11-	C10C5		113.0 (3)
06-C1-01		121.9 (5)	C12-			113.2 (3)
O6-C1-C2		128.5 (5)	C12-			108.9
01—C1—C2		109.6 (4)	C10-	—C11—H11A		108.9
C3—C2—C1		107.7 (4)	C12-			108.9
C3—C2—C1	3	131.0 (5)	C10-			108.9
C1—C2—C1	3	121.3 (4)	H11.	A—C11—H11B		107.7
С2—С3—С4		132.4 (4)	O2–	-C12O1		108.4 (3)
C2—C3—C1	2	109.7 (4)	O2–	-С12-С3		114.3 (3)
C4—C3—C1	2	117.3 (3)	O1–	-C12-C3		104.2 (3)
O4—C4—C3		110.2 (3)	02–	-C12-C11		110.0 (3)
O4—C4—C5		108.0 (3)	O1–	-C12-C11		109.7 (3)
C3—C4—C5		110.1 (3)	С3—	-C12C11		109.9 (3)
O4—C4—H4	A	109.5	C2-	-C13—H13A		109.5

С3—С4—Н4А	109.5	С2—С13—Н13В	109.5
С5—С4—Н4А	109.5	H13A—C13—H13B	109.5
C15—C5—C6	111.6 (3)	C2—C13—H13C	109.5
C15—C5—C4	107.3 (3)	H13A—C13—H13C	109.5
C6—C5—C4	109.1 (3)	H13B—C13—H13C	109.5
C15—C5—C10	110.5 (3)	C6—C14—H14A	109.5
C6—C5—C10	108.5 (3)	C6—C14—H14B	109.5
C4—C5—C10	109.8 (3)	H14A—C14—H14B	109.5
C7—C6—C14	110.9 (3)	C6—C14—H14C	109.5
C7—C6—C5	114.3 (3)	H14A—C14—H14C	109.5
C14—C6—C5	113.6 (3)	H14B—C14—H14C	109.5
С7—С6—Н6А	105.7	C5-C15-H15A	109.5
С14—С6—Н6А	105.7	C5-C15-H15B	109.5
С5—С6—Н6А	105.7	H15A—C15—H15B	109.5
O5—C7—C8	108.0 (3)	С5—С15—Н15С	109.5
O5—C7—C6	110.3 (3)	H15A—C15—H15C	109.5
C8—C7—C6	114.1 (3)	H15B—C15—H15C	109.5
О5—С7—Н7А	108.1	O4—C16—H16A	109.5
С8—С7—Н7А	108.1	O4—C16—H16B	109.5
С6—С7—Н7А	108.1	H16A—C16—H16B	109.5
С7—С8—С9	112.8 (3)	O4—C16—H16C	109.5
С7—С8—Н8А	109.0	H16A—C16—H16C	109.5
С9—С8—Н8А	109.0	H16B—C16—H16C	109.5
С7—С8—Н8В	109.0	O7—C17—O5	124.1 (5)
С9—С8—Н8В	109.0	O7—C17—C18	125.2 (5)
H8A—C8—H8B	107.8	O5—C17—C18	110.6 (5)
C10—C9—C8	112.4 (3)	C17—C18—H18A	109.5
С10—С9—Н9А	109.1	C17—C18—H18B	109.5
С8—С9—Н9А	109.1	H18A—C18—H18B	109.5
С10—С9—Н9В	109.1	C17—C18—H18C	109.5
С8—С9—Н9В	109.1	H18A—C18—H18C	109.5
H9A—C9—H9B	107.9	H18B—C18—H18C	109.5
O3—C10—C9	105.8 (3)		
C12—O1—C1—O6	-175.9 (4)	C5—C6—C7—C8	-48.8 (5)
C12—O1—C1—C2	1.8 (5)	O5—C7—C8—C9	-75.5 (4)
O6—C1—C2—C3	175.2 (5)	C6—C7—C8—C9	47.6 (5)
O1—C1—C2—C3	-2.3 (5)	C7—C8—C9—C10	-52.6 (5)
O6—C1—C2—C13	-3.2 (8)	C8—C9—C10—O3	177.3 (3)
O1—C1—C2—C13	179.3 (4)	C8—C9—C10—C11	-67.7 (4)
C1—C2—C3—C4	-168.7 (4)	C8—C9—C10—C5	57.6 (4)
C13—C2—C3—C4	9.5 (8)	C15-C5-C10-O3	-50.2 (4)
C1—C2—C3—C12	1.8 (5)	C6—C5—C10—O3	-172.8 (3)
C13—C2—C3—C12	179.9 (5)	C4—C5—C10—O3	68.0 (3)
C16—O4—C4—C3	87.5 (4)	C15—C5—C10—C9	66.8 (4)
C16—O4—C4—C5	-152.2 (3)	C6—C5—C10—C9	-55.8 (4)
C2—C3—C4—O4	-126.6 (4)	C4—C5—C10—C9	-175.0 (3)
C12—C3—C4—O4	63.5 (4)	C15—C5—C10—C11	-170.1 (3)
C2—C3—C4—C5	114.4 (5)	C6—C5—C10—C11	67.3 (4)
C12—C3—C4—C5	-55.5 (4)	C4—C5—C10—C11	-51.9 (4)

O4—C4—C5—C15	51.6 (4)	O3—C10—C11—C12	-69.5 (4)
C3—C4—C5—C15	171.9 (3)	C9-C10-C11-C12	176.4 (3)
O4—C4—C5—C6	172.6 (3)	C5-C10-C11-C12	52.2 (4)
C3—C4—C5—C6	-67.0 (4)	C1-01-C12-02	-122.9 (4)
O4—C4—C5—C10	-68.6 (4)	C1-01-C12-C3	-0.7 (4)
C3—C4—C5—C10	51.8 (4)	C1-01-C12-C11	116.9 (4)
C15—C5—C6—C7	-70.3 (4)	C2—C3—C12—O2	117.5 (4)
C4—C5—C6—C7	171.4 (3)	C4—C3—C12—O2	-70.4 (4)
C10—C5—C6—C7	51.7 (4)	C2—C3—C12—O1	-0.7 (4)
C15-C5-C6-C14	58.4 (4)	C4—C3—C12—O1	171.4 (3)
C4—C5—C6—C14	-60.0 (4)	C2—C3—C12—C11	-118.2 (4)
C10-C5-C6-C14	-179.6 (3)	C4—C3—C12—C11	53.9 (4)
C17—O5—C7—C8	-124.0 (4)	C10-C11-C12-O2	76.8 (4)
C17—O5—C7—C6	110.8 (4)	C10-C11-C12-O1	-164.0 (3)
C14—C6—C7—O5	-57.0 (4)	C10-C11-C12-C3	-50.0 (4)
C5—C6—C7—O5	73.0 (4)	C7—O5—C17—O7	-5.4 (7)
C14—C6—C7—C8	-178.8 (3)	C7—O5—C17—C18	177.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2A…O3	0.82	2.19	2.879 (4)	142.
O3—H3A····O2 ⁱ	0.82	2.06	2.755 (4)	143.
~				

Symmetry codes: (i) -x, y+1/2, -z+1/2.

